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Abstract—Microarchitectural side-channel attacks are an in-
sidious threat to program security. An emerging class of
these attacks constructs gadgets that dereference the contents
of data memory directly. This is caused by optimizations,
such as speculative execution and data-memory prefetching,
that can guess (incorrectly) that the program is performing
a pointer chase. In theory, this is devastating for security,
as dereferencing a secret seemingly leaks it over memory-
based side channels, e.g., through the cache. In practice, it
is not. Since most secrets do not look like valid pointers, their
dereference typically fails and does not leak anything.

In this paper, we introduce the page walk side channel
(PWSC), a new attack that can leak information even when
an invalid pointer is dereferenced. In particular, given a 64-
bit secret that passes the address canonicality check, PWSC
can leak all remaining bits of the secret except for the low-
order 6 bits, without making any assumptions on what these
bits look like. We demonstrate how PWSC amplifies leakage
in scenarios exploiting speculative execution and data-memory
prefetching. For speculative execution, we show that PWSC,
combined with Intel’s LAM feature, can be exploited to leak
nearly all of physical memory and that even without LAM,
PWSC can be used to leak Dilithium secret keys. For data-
memory prefetching, we reverse engineer the semantics of
Intel’s data-memory dependent prefetcher (DMP) and show
how this DMP and PWSC can be combined to break security
in an intra-process sandbox setting.

1. Introduction

The past few years have marked the beginning of a new
era in microarchitectural side-channel attack research. Tra-
ditionally, adversaries were limited to leaking information
from architecturally executed operations [1], [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13]. In this new era,
however, adversaries can leak information from operations
that the victim had never intended to execute but were
still executed microarchitecturally as a result of CPU op-
timizations. A notable example of such an operation occurs
when speculative execution or data prefetchers perform a

direct dereference of secret data (i.e., *secret). Recent
work demonstrates that this dereferencing operation can be
exploited to increase the attack surface of Spectre [14] and
break constant-time cryptographic implementations [15].

Fortunately, there has been a saving grace, namely that
it is difficult for an adversary to leak sensitive informa-
tion from *secret when secret contains arbitrary 64-
bit data [16], [17]. Suppose *secret passes the address
canonicality check—meaning that its high-order 16 bits (i.e.,
bits 63:48) are copies of its 47th bit—or that mechanisms
are enabled that relax this canonicality check [14]. Ideally,
an adversary would like to be able to leak the remaining
47 bits, regardless of the distribution they follow. However,
this is not possible today. Case in point, attacks exploiting
speculative executions of *secret can only leak the low-
order 47 bits when secret is ASCII data with a known
prefix, limiting targets to only the root password hash [14].
Similarly, attacks exploiting prefetcher-induced executions
of *secret leak information only when secret is ma-
nipulated to pass specific “looks-like-a-pointer” heuristic
checks, which requires bespoke cryptanalysis [15].

This paper ameliorates the above issues by introducing
the page walk side channel (PWSC). PWSC demonstrates
that an adversary observing the execution of *secret can
leak up to 42 bits of secret (specifically, bits 47:6)—
without making any assumptions on what these bits look
like. To our knowledge, PWSC exceeds the bit leakage
capability of and operates under fewer assumptions than all
previously known memory-based side channels. For exam-
ple, existing cache side channels can only leak the bits of
secret overlapping with the cache set index bits (i.e., bits
11:6) [1], [2], [5], [8], [18], [19], [20], [21] or, at best, some
of the cache line offset bits (i.e., bits 5:2) [10]—if and only
if secret represents a valid (mapped) virtual address.

PWSC exploits the cache side-channel leakage inherent
to the page walk process. When *secret executes and
induces a page walk, the MMU uses bits 47:12 of secret
as indexes into four levels of page tables, and this process
results in cache fills that encode parts of these bits [17].
Decoding these bits is, however, nontrivial because pro-
grams also perform unwanted page walks, and each page



walk causes multiple, potentially-aliasing cache fills. This
makes it difficult to observe the secret-dependent page walk
and reconstruct which cache fill is due to which bits of
secret. PWSC relies on two novel components that enable
an adversary to overcome these challenges:

1) PWSC’s first component is a differential Prime+Probe
receiver (Section 3.1) which can capture and isolate
the cache side effects of a page walk on secret even
in the presence of systematic noise, i.e., reproducible
noise that occurs across experiments. This technique
leverages the fact that *secret only executes mi-
croarchitecturally as a result of a CPU optimization.
Then, the key idea in differential Prime+Probe is for
the adversary to run two identical experiments. In one
experiment, the adversary allows the optimization to
dereference *secret. In the other they do not, e.g.,
by not completing a predictor’s training procedure.
The adversary can then isolate the page walk due to
secret by subtracting the two signals.

2) PWSC’s second component is an order oracle (Sec-
tion 3.2) that can map each page table access inferred
from the cache state to its corresponding page table
(PT) level, arranging the bits recovered from the cache
state into their correct order. In particular, PWSC’s
memory mapping order oracle selectively maps mem-
ory to progressively increase the page table level where
the page walk on secret terminates. This way, only
one new page table index is revealed at a time, which
is sufficient for the adversary to disambiguate which
cache fill corresponds to which PT index.

We demonstrate the security implications of PWSC
through two case studies that explore how PWSC can in-
crease information leakage over the state of the art through
distinct microarchitectural optimizations that are capable of
dereferencing invalid pointers (potentially-secret data).

The first case study explores how to enhance Spectre-V2
attacks with our PWSC receiver, with and without future
hardware features. Under this threat model, we show that
an adversary can leak almost all of physical memory with
future hardware features enabled. Moreover, PWSC can be
used to leak secret keys from the post-quantum Dilithium
cryptosystem even without said future hardware features.

The second case study explores how to enhance leakage
through Intel’s data-memory dependent prefetcher (DMP)
using PWSC. While prior work identified the existence of
this DMP and determined an activation pattern for it [15],
we are the first to reverse engineer its semantics and show
that any DMP can be used to leak invalid virtual addresses.
We then show how this DMP and PWSC can be combined
to break security in an intra-process sandbox setting.

In summary, this paper contributes the following:
1) We introduce the page walk side channel (PWSC), a

new type of side channel and associated attack tech-
niques that, by observing the execution of *secret,
can reconstruct up to 42 bits of secret—without
making any assumptions on what these bits are and
even when secret does not represent a valid address.
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Figure 1. A page walk on a virtual address begins if and only if the address
passes the canonicality check. During the page walk, each PT index is used
to select the PTE with the address of the next level’s PT. This repeats until
the translation fails or when the physical address of the data page is found.
The left shift 3 is performed to adjust for the size of each PTE (8 bytes).

2) We combine PWSC with existing Spectre-V2 attacks to
demonstrate that prior work underestimated the danger
of unmasked Spectre gadgets in the kernel. We demon-
strate that, with Intel LAM enabled, PSWC can leak
almost all of physical memory and, without Intel LAM,
PWSC can still leak valuable cryptographic keys.

3) We reverse engineer the semantics of the Intel DMP
and show that PWSC, combined with new Intel DMP-
specific attack techniques, can extend the leakage capa-
bilities of DMP attacks and break isolation in an intra-
process sandbox setting.

Disclosure. We disclosed our findings to Intel and met
with Intel researchers to discuss the issue in Q2 2024. Intel
referred to existing mitigations, such as Branch History In-
jection mitigations and the upcoming Linear Address Space
Separation (LASS) feature (cf. Section 6). Intel also updated
their public guidance on these mitigations [22].

2. Background

2.1. Page tables & page walks

Modern processors employ 64-bit virtual addresses and
either 48-bit or 57-bit virtual address spaces, resulting in
4 or 5 levels of page tables (PTs) respectively. W.l.o.g. we
will assume 48-bit virtual address spaces and 4 levels of
PTs for the rest of the paper. The remaining upper bits of
a 64-bit virtual address must be the sign extension of the
47th bit1 to pass a canonicality check before the page walk
process begins. If the check fails, no page walk occurs. If the
action triggering the page walk was an instruction and that
instruction becomes non-speculative, an exception occurs.
If the 47th bit is 0, the virtual address is in user space and
called a userspace address / pointer; otherwise, it is in kernel
space and called a kernel-space address / pointer.

The 48 bits of a virtual address are split between the
virtual page number (VPN) and the page offset. We will

1. That is, the most significant bit of the virtual address that is a part of
the virtual address space. We index starting from 0 throughout the paper.
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Figure 2. Page walker caches (PWCs) contain partial translation of VPN
bits. In the event of a hit in the page walker caches, the MMU skips as
many PT accesses as possible to improve performance. For example, when
there is a hit in the 3rd level page walker cache, the MMU skips accessing
PL4 and PL3 and directly moves to the PL2 access.

assume 4 KB data and PT pages. Hence, the VPN is 36 bits
and the page offset is 12 bits. Each PT page is made up of
8-byte page table entries (PTEs), resulting in 512 PTEs per
PT page. The VPN bits are split into 4 PT indexes (9 bits
per PT index) that select which PTE in each PT level.

We refer to the PT at each level as PL4, PL3, PL2, PL1
and a VPN’s PT indexes into each level as PLI4, PLI3,
PLI2, PLI1, respectively. During the page walk, the memory
management unit (MMU) walks the PT tree starting from
PL4. The register CR3 points to PL4 and uses PLI4 to index
into PL4 to obtain PL3, and so on. This process terminates
when the MMU reaches the last PT where PLI1 returns
the PTE that gives the physical page number, which is
used to access the data page. The page offset bits require
no translation as they are shared between the virtual and
physical addresses. This process can be seen in Figure 1.

Early terminating page walk. If a PT is not present in
memory, the MMU will trigger a page fault. This can occur
at any level of the PT tree and will terminate the page walk
early. Specifically, for i > 1 the MMU may look up PLi at
PLIi but terminate without looking up PLi−1.

TLB & page walker caches. To improve page walk perfor-
mance, each CPU core of most modern processors employs
four levels of page walker caches (also known as translation
caches or paging-structure caches) [23], [24], [25], [26],
[27]. Each level of the page walker caches is referenced
using the bits of the VPN up until the end of that level’s
PT index and stores the physical address of the next PT
level. Specifically, given a virtual address, the 4th level page
walker cache is referenced using bits 47:39, the 3rd level
using bits 47:30, the 2nd level using bits 47:21, and the
1st level (also known as the TLB) using bits 47:12 (i.e.,
the entire VPN). Before starting a page walk on a virtual
address, the MMU checks if the various page walker caches
(starting from the TLB) contain a full or partial translation
of that address’ VPN bits. If there is a cache hit, the MMU
uses the cached translation to skip as many PT accesses as
possible, as can be seen in Figure 2. For example, if there
is a hit in the 3rd level page walker cache, the MMU skips
accessing PL4 and PL3 and directly moves to the PL2 access.

Supervisor mode access prevention (SMAP). SMAP is a
processor feature that, when enabled, prevents the processor
from accessing userspace memory from kernel mode. As
pointed out by prior work [14], SMAP blocks the final
access to user data (and its associated cache fills) but only
after completing that access’ page walk and associated fills
to the TLB and the page walker caches.

2.2. Caches and Cache Side Channels

Cache architecture. Modern processors use a cache hier-
archy to reduce memory access latency. Typically, higher-
level caches are smaller and faster to access, while lower-
level caches are larger but slower to access. For example,
the Intel processors we study in this paper have three cache
levels, a core-private L1/L2 and a shared L3. These caches
are set-associative, meaning that they contain a fixed number
of cache sets, each of which can fit a fixed number of cache
lines. Cache lines are the basic unit for cache transactions.
Cache line size on Intel processors is typically 64 bytes,
resulting in eight 8-byte PTEs per cache line.

Cache side-channel attacks. In a cache side-channel attack,
an attacker infers a victim program’s secret by observing
the side effects of the victim program’s secret-dependent
accesses to the processor cache. These attacks typically
consist of three steps, during which the attacker (i) brings
the cache into a known state, (ii) lets the victim execute,
and (iii) checks the state of the cache to learn information
about the victim’s execution during step (ii).

There are two popular styles of cache side-channel
attacks: Flush+Reload [3] and Prime+Probe [1], [2]. In
Flush+Reload, the attacker shares the target cache line with
the victim. The attacker first flushes the target cache line
to memory and then measures its access latency to deduce
if the victim has accessed it. In Prime+Probe, the attacker
builds an eviction set of addresses that map to a target cache
set, primes the cache set with the eviction set, and probes it
to figure out whether the victim accessed that target cache
set and displaced a line in the eviction set. Prime+Probe
does not require the attacker and victim to share memory.
Our attacks leverage on Prime+Probe on the L1 cache.

2.3. Information leakage through page walks

Gras et al. [17] show how the page walk process leaks
information over the cache side channel. Their observation is
that during the page walk, the MMU brings accessed PTEs
into the L1 data cache. The respective cache fills associated
with each PTE leak part of their respective PT index. Using
parameters from before, there are 8 PTEs per 64-byte L1
cache line. Given a 9-bit PT index used to select a PTE,
the low-order 3 bits are a part of the cache line offset and
the high-order 6 bits are used to select the cache set. An
attacker monitoring the L1 cache state can therefore learn
the high-order 6 bits of the PT indexes, as shown in Figure 3.
Gras et al. exploited this leakage to break address space
layout randomization (ASLR), assuming that the attacker
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Figure 3. During a page walk, the MMU brings touched PTEs into the L1
data cache. The most significant 6 bits of a PT index determine the cache
set accessed during its respective cache fill. The remaining 3 bits are part
of the cache line offset.

has control over the valid address that undergoes translation
during the page walk. The next section demonstrates an
attack in a weaker setting—where the attacker does not
control the address being translated—and shows how it can
leak information about data that is an invalid address.

2.4. Spectre attacks

Spectre attacks exploit how a processor can microar-
chitecturally execute instructions outside of the program’s
architectural semantics. These speculative instructions can
access and transmit secrets over microarchitectural side
channels (e.g., the cache), which can then be measured by
the attacker (the ‘receiver’). Researchers have leveraged a
number of microarchitectural structures to induce specu-
lation (e.g., the branch target buffer) which gives rise to
a number of Spectre variants [28], [29], [30], [31], [32],
[33], [34], [35], [36], [37]. In this paper, we focus on the
branch history injection (Spectre-BHI) variant [29], [38]. We
provide background on Spectre-BHI in Section 4.2.

2.5. Data memory-dependent prefetchers

Data memory-dependent prefetchers (DMPs) are a class
of hardware prefetchers that are optimized to reduce average
memory access time when the program has an indirect (e.g.,
pointer-chasing) access pattern. Prefetchers are conceptu-
ally next-in-sequence predictors. Classical prefetchers try
to predict the next-in-sequence by looking at the memory
address trace. DMPs, on the other hand, try to predict the
next-in-sequence by looking at the memory address trace
and the contents of memory. This increases the information
leakage possible through a DMP. There have been several
proposed types of DMPs [15], [39], [40], [41], [42], [43],
[44], [45], [46] that differ in what specific pattern they
prefetch. However, while prior work reverse engineered
the activation patterns of the DMP deployed in modern
Apple processors [15], [42], little is known about the DMP
deployed in Intel processors besides its existence and a basic
activation pattern for it [47].

3. Page walk side channel (PWSC)

In this section, we introduce the page walk side channel
(PWSC). We demonstrate that, given a memory dereference
of an arbitrary 64-bit data value, PWSC can leak up to 42
bits of that 64-bit data value, exceeding the bit leakage ca-
pability of previously known memory-based side channels.

Notation and assumptions. Like prior microarchitectural
side channels, PWSC involves a transmitter in the victim’s
security domain and a receiver in the attacker’s security
domain. PWSC’s transmitter performs a memory derefer-
ence of a secret 64-bit data value. We refer to this memory
dereference as *secret. We do not make any assumptions
on the value being dereferenced. In particular, secret
does not need to be a valid virtual address. We assume
that the attacker can influence whether *secret occurs
in the victim. We also assume that the attacker can cause
*secret to induce a page walk, and that the attacker can
monitor the side effects of this page walk on the CPU’s L1
cache. Going forward, we refer to a page walk on secret
as a secret-dependent page walk.2 Sections 4 and 5 discuss
threat models where these assumptions hold in practice.

Overview. Recall from Section 2.1 that when *secret
executes and induces a page walk, secret’s VPN bits (i.e.,
bits 47:12) are used by the MMU as indexes into four levels
of PTs, and, if the page walk succeeds, secret’s 12 least
significant bits (i.e., bits 11:0) are used as the offset into a
data page to complete the dereference. The goal of PWSC’s
receiver is to recover as many of the bits of secret that
are used during this process (i.e., bits 47:0) as possible. To
this end, PWSC’s receiver uses two novel mechanisms:

1) A cache receiver that can observe the effects of a
secret-dependent page walk on the cache (Figure 3)
even in the presence of systematic noise.

2) An order oracle that can map each access to its corre-
sponding PT level, arranging the bits recovered by the
cache receiver into their correct order.

Next, we describe these mechanisms and demonstrate
that PWSC can leak up to 42 bits of secret, corresponding
to its entire VPN bits (47:12) and half of its page offset bits
(11:6)—without making any assumptions on what is in these
bits and even when secret is not a valid virtual address.
To our knowledge, PWSC exceeds the bit leakage capability
of all previously known memory-based side channels.

Experimental setup. We run all this paper’s experiments on
the P-cores of an Intel Core i9-13900K processor, featuring
a 12-way and 64-set L1 cache. Our machine has 16 GB of
RAM and runs the Ubuntu 22.04 OS with kernel 6.6-rc4.

2. By secret-dependent page walk we mean a page walk that happens
unconditionally on the value of secret, resulting in PT accesses that
encode the bits of secret. This is not to be confused with a page walk
that occurs conditionally on the value of secret, which would only leak
whether secret matches the branch’s condition.



3.1. PWSC cache receiver

PWSC’s cache receiver uses what we call the differen-
tial Prime+Probe technique. Recall from Section 2.2 that
Prime+Probe relies on priming the cache, letting the victim
(in our case, *secret) execute, and probing the cache
to capture the side effects of the victim’s execution. For
*secret to result in a secret-dependent page walk, PWSC
also requires evicting secret from the TLB. Further, to
capture the full page walk signal via the cache side channel,
PWSC needs to flush the page walker caches, which could
potentially cause the page walk to skip accessing certain PT
levels (cf. Section 2.1). Unfortunately, these extra eviction
steps introduce significant noise and result in false positives
in the Probe phase. In the following, we describe the base-
line PWSC cache receiver and the denoising techniques we
employ to remove these false positives.

Baseline cache receiver. PWSC’s baseline cache receiver
consists of two high-level steps: (i) first, we flush the
TLB and page walker caches, and (ii) second, we perform
Prime+Probe on the CPU’s L1 cache. For step (i), our
receiver employs cache thrashing. That is, we perform a
large (empirically determined) number of page-walk induc-
ing memory accesses that result in filling up the entire TLB
and page walker caches. For step (ii), our receiver relies on
a conventional L1 Prime+Probe [1], [2], generating eviction
sets that cover the CPU’s entire L1 cache.3

Combining the two steps, for each set of the L1 cache,
the baseline receiver first flushes the TLB and the page
walker caches; it then performs Prime+Probe on that set,
monitoring the latency of each address in the target eviction
set individually and recording the number of cache misses.
Finally, it repeats this process for the next cache set.

We evaluate PWSC’s baseline cache receiver on a syn-
thetic *secret transmitter. For now, we embed this trans-
mitter in the same program as the receiver and construct
secret to represent a valid address (i.e., one for which
each PT is present and the page walk does not fail). We run
PWSC’s receiver 128 times for each L1 cache set, executing
*secret between the Prime and the Probe steps.

Figure 4 (Left) shows the results, indicating a high cache
miss rate for many L1 cache sets. Recall from Figure 3 that
a clean page walk involves five cache fills, corresponding to
the four page table accesses and the final data page access.
Hence, an ideal PWSC receiver should observe misses in
no more than five L1 cache sets.4 Unfortunately, our results
indicate that the baseline PWSC is far from ideal and suffers
from systematic false positives. That is, using the baseline
PWSC receiver, the adversary is unable to determine the
cache sets associated with the secret-dependent page walk.

3. Since the L1 is virtually indexed, constructing these L1 eviction sets
is trivial. The adversary simply picks arbitrarily virtual addresses with the
desired L1 cache set index bits (i.e., bits 11:6).

4. In the case of overlapping L1 cache sets the adversary would observe
multiple misses in the same cache sets.
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Figure 4. Left: baseline Prime+Probe cache receiver results. Right: dif-
ferential Prime+Probe cache receiver results. Darker colors are associated
with more L1 eviction set misses during the Probe step.

Differential Prime+Probe receiver. We now describe
PWSC’s differential Prime+Probe receiver. Recall that the
baseline receiver starts by flushing the TLB and the page
walker caches. This step is necessary for *secret to
trigger a secret-dependent page walk and for this page walk
to affect the cache. However, a side effect of this step is that
it also triggers a page walk on every load performed during
the attack. These page walks result in additional cache
fills, which, as Figure 4 (Left) shows, introduce systematic
false positives. To isolate the cache fills due to the secret-
dependent page walk, PWSC’s receiver needs a method to
mask out the noise due to non-secret dependent page walks.

PWSC performs this denoising by augmenting the base-
line cache receiver with differential Prime+Probe. This
technique relies on running the baseline receiver twice.
In the first run, the attacker influences the victim so that
*secret occurs, observing the side-effects of both the
secret-dependent page walk and the non-secret dependent
page walks (as in the baseline receiver). In the second
run, the attacker influences the victim so that *secret
does not occur,5 only observing the side-effects of the non-
secret dependent page walks. The attacker can thus subtract
the cache side-channel signal observed in the second run
from the one observed in the first run to uniquely identify
the cache sets associated with the secret-dependent page
walk. Figure 4 (Right) shows the results of running PWSC’s
differential cache receiver 128 times for each L1 cache set.
The results demonstrate that, using the differential PWSC
receiver, the attacker is able to clearly determine the cache

5. As we show in Sections 4 and 5, this capability holds when *secret
is performed only microarchitecturally and the attacker can influence the
microarchitectural optimization to perform *secret selectively.



sets associated with the secret-dependent page walk (four
page table accesses and the final data page access).

3.2. PWSC order oracle

PWSC’s cache receiver can learn the L1 cache set in-
dexes associated with a secret-dependent page walk. These
indexes correspond to the high-order 6 bits of the four PT
indexes in secret’s VPN bits and the high-order 6 bits of
secret’s page offset bits (cf. Figure 3). To reconstruct
the position of these bits within secret, however, the
attacker also needs a way to map each cache set index to
its corresponding PT level or data page access. That is, the
attacker needs an order oracle that can order the five cache
fills observed by PWSC’s receiver. We now describe two
methods to implement such an oracle. Additionally, we show
that the first method can leak the low-order 3 bits of each
PT index, enabling PWSC to leak up to 42 bits of secret.

Memory mapping order oracle. The first order oracle
method involves selectively mapping memory in the adver-
sary’s virtual address space to cause the secret-dependent
page walk to fail at specific, attacker-selected levels. This
method is applicable in threat models where secret is
allowed to map to the adversary’s virtual address space. As
we show in Sections 4 and 5, these include the user-to-kernel
and the intra-process sandboxing threat models.

Using the memory mapping order oracle, the adversary
moves what level of the secret-dependent page walk fails
from higher levels to lower levels, one by one. This way,
only one new PT index is revealed via the cache side channel
at each round. By proceeding one level at a time, this order
oracle allows to directly map each cache set index to its
corresponding PT level or data page access.

Suppose bits 47:0 of secret are random and, as a
result, secret does not represent a valid address. When
*secret executes, the MMU attempts to perform a page
walk on secret (Figure 1). The MMU accesses CR3
to find PL4’s address. Next, it uses PLI4 (bits 47:39 of
secret) to select a PTE from PL4, which requires a cache
fill. However, since secret is not a valid address, the
retrieved PTE is likely6 going to be marked as not present.
As a result, the secret-dependent page walk terminates.
Further, since the page walk only involved the cache fill
corresponding to PL4’s access, PWSC’s receiver can directly
leak the high-order 6 bits of PLI4 (bits 47:41 of secret).

To continue the attack, the adversary needs a mechanism
to mark the PTE retrieved from PL4 as present and cause
the secret-dependent page walk to fail at PL3. We perform
this step by creating a new mapping in the adversary’s own
address space at a virtual address that shares PLI4 with
secret. As a result of this new mapping, the above PTE
now also covers the new adversary’s address and is marked
as present by the MMU. The secret-dependent page walk
can thus move to PL3, revealing the cache fill associated

6. See the following limitation when the PTE is a valid entry.
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Figure 5. For each PT index the attacker guesses the low-order 3 bits and
maps memory based on the guess. If the guess is correct, it will result in
an extra cache fill due to next level’s PT look up. In this figure, the attacker
is brute forcing the least significant 3 bits of PL4 as an example. When
the guess is wrong (000-110), there is only an access to PL4. However,
when the guess is correct (111), there is an extra access to PL3.

with PL3’s access, and only terminate again due to the not-
present PTE retrieved from PL3. The adversary can then use
the same method to mark this new PTE as present and learn,
one by one, the cache fills associated with all PT levels.

The above mechanism relies on the adversary creating a
mapping at a virtual address that shares PLI4 with secret.
However, at this stage, the adversary only knows the high-
order 6 bits of PLI4. We address this issue by brute forcing
the remaining 3 bits of PLI4. Specifically, the adversary
guesses the low-order 3 bits of PLI4, creates a mapping
based on this guess, and checks if the secret-dependent page
walk results in an additional cache fill (due to PLI3’s access).
If an additional cache fill occurs, the adversary learns both
the low-order 3 bits of PLI4 and the high-order 6 bits of
PLI3. The adversary can repeat this process, visualized in
Figure 5, one PT level at a time and, at best, reconstruct
the entire VPN bits (47:12) and half of the page offset bits
(11:6)—a total of 42 bits—of secret.

The memory mapping order oracle has one limitation.
If secret shares any subset of its PT indexes (from PLI4
to PLIi for 1 ≤ i ≤ 4) with memory mappings that already
exist in the victim’s virtual address space, their respective
PTs will always be present and the secret-dependent page
walk will never fail at those PT levels. As a result, the cache
fills associated with those PT accesses will always occur.
Fortunately, in Sections 4 and 5 we find this situation rarely
happens. Nonetheless, we now present an alternative order
oracle method that can be used when this happens.

Page walker cache order oracle. The second order oracle
method involves selectively flushing different page walker
caches to cause the secret-dependent page walk to only
access specific, attacker-selected PT levels. Recall from
Section 2.1 that before starting a page walk, the MMU
checks if the various page walker caches (starting from the
1st level one, also known as the TLB) contain a full or partial
translation of secret’s VPN bits. If there is a cache hit,
the MMU uses the cached translation to skip as many PT
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Figure 6. By manipulating the page walker caches (PWCs) an attacker can
hide portions of the page walk process and conduct a sliding window style
attack to order the page walk accesses. For example, when the attacker
flushes the TLB and PWC L2 (top), accesses to PL2, PL1 and data page
are revealed. If the attacker further flushes the PWC L3 the attacker will
observe an extra access compared to just flushing the PWCs up to L2. The
extra access reveals to the attacker PLI3.

accesses as possible. For example, if there is a hit in the 3rd
level page walker cache, the MMU skips accessing PL4 and
PL3 and directly moves to the PL2 access.

Using the page walker cache order oracle, the adversary
progressively increases the levels of the page walker caches
that are selectively flushed (starting from the 1st level), one
at a time.7 This way, only one new PT index is encoded into
the cache state at each round. By proceeding one level at a
time, this order oracle directly maps each cache set index to
its corresponding PT level or data page access. Figure 6
visualizes this process, which, when secret shares its
entire VPN with that of pre-existing memory mappings,
allows the adversary to reconstruct the high-order 6 bits of
each PT index and the high-order 6 bits of the page offset—a
total of 30 bits—of secret.

The page walker cache order oracle can be used to
overcome the aforementioned limitation of the memory
mapping order oracle at the cost of a slightly reduced bit
leakage capability (i.e., the low-order 3 bits of the already-
mapped PT indexes cannot be reconstructed). Further, the
page walker cache order oracle can be used in threat models
where secret is not allowed to map to the attacker’s
virtual address space. In these threat models, however, the
oracle is limited to leaking the subset of PT indexes that
is shared with pre-existing memory mappings. If no such
mappings exist and the adversary cannot create them, this
oracle can only leak the high-order 6 bits of PLI4.

3.3. PWSC summary

Overall, given an arbitrary 64-bit value secret, PWSC
involves a transmitter executing *secret in the victim’s
security domain and a receiver that attempts to reconstruct

7. We describe our approach to selectively flush the various page walker
cache levels in Appendix A.

1 // Architecturally
2 nested_addr = *addr
3 ... = *nested_addr
4

5 // Under Speculation
6 // Attacker Controls addr
7 secret = *addr
8 ... = *secret

Listing 1. Pointer chasing pattern that can become a *secret.

secret from the attacker’s security domain. PWSC’s re-
ceiver leaks the bits of secret one PT index at a time.
Specifically, the receiver uses differential Prime+Probe (Sec-
tion 3.1) and an order oracle (Section 3.2) to leak the high-
order 6 bits of each level’s PT index and of the page offset.
When using the memory mapping order oracle, the receiver
additionally leaks the low-order 3 bits of each level’s PT in-
dex. At best, PWSC is capable of leaking 42 bits of secret
(i.e., bits 47:6), which exceeds the leakage capability of all
previously known memory-based side channels. However,
PWSC makes a fundamental assumption whose applicability
we have yet to discuss: that the receiver can cause *secret
to induce a page walk. In most systems, this assumption
requires passing a canonicality check, meaning that bits 63-
48 of secret must be copies of the 47th bit. We revisit
this limitation more in detail in the following sections.

4. Case study 1: data dereferencing through
speculation

In this section, we demonstrate that PWSC increases
information leakage relative to the state of the art when
secret data is dereferenced as a result of speculative ex-
ecution. Section 4.1 provides background and the threat
model. Section 4.2 describes our approach for combining
Spectre-BHI and PWSC. Section 4.3 demonstrates that,
when the Intel LAM processor feature is enabled, PWSC in
conjunction with unmasked Spectre gadgets can be exploited
to dump almost all of physical memory. Finally, Section 4.4
demonstrates that, even without LAM, we can combine
PWSC with unmasked Spectre gadgets to perform full key
extraction on the post-quantum Dilithium cryptosystem.

4.1. Preliminaries

Threat model. We assume the standard user-to-kernel Spec-
tre threat model. In this setting, the adversary has full control
of an unprivileged user process and aims to leak secret data
from the kernel. We assume all currently deployed kernel
mitigations to Spectre attacks are enabled. Additionally,
when exploiting unmasked gadgets, we assume that the
adversary knows the address of secret. This assumption
follows prior work, which describes ways to leak secret’s
address either by using a leakage gadget to scan the kernel
or by massaging physical memory [14], [48], [49].



Unmasked gadgets. Recent work [14] reports that the
majority (numbering in the tens of thousands) of candidate
Spectre gadgets in the Linux kernel follows the pointer-
chasing pattern shown in Listing 1, where the code performs
two nested memory dereferences. Architecturally, these gad-
gets are harmless, as they always dereference non-secret,
valid pointers. However, under speculation, an adversary
who controls the input address (addr) can cause these
gadgets to dereference (transmit) secret, non-pointer data.

These gadgets are known as unmasked gadgets as they
do not apply any mask to the secret before transmission [16].
Unmasked gadgets are difficult to exploit for several reasons.
One important reason is that, for *secret to initiate a
memory dereference, secret needs to pass a canonicality
check (Section 2.1). Hertogh et al. [14] circumvented this by
abusing a feature of upcoming Intel processors called Linear
Address Masking (LAM). They then used an Evict+Reload
covert channel through the data TLB (dTLB) to extract data.

Linear address masking. LAM is a feature of upcoming
Intel microarchitectures (e.g., Sierra Forest, Grand Ridge,
Arrow Lake, and Lunar Lake) that allows software to use the
most significant bits of virtual addresses for metadata [14],
[50]. To this end, LAM relaxes the canonicality check on
the lower 15 bits of the most significant 16 sign-extended
bits in a virtual address and can be enabled for either all or
only userspace addresses (in which case, we call it userspace
LAM). When LAM is enabled, the canonicality check just
verifies whether the 63rd and 47th bits of the virtual address
are equal, rather than checking equality of all 63:47 bits. In
our experiments, we simulate LAM in software by sign-
extending the 47th bit of addresses to bits 62:48, as done
by Hertogh et al. [14].

State-of-the-art receiver for unmasked gadgets. Hertogh
et al. [14] use an Evict+Reload dTLB receiver to leak
data from unmasked gadgets. Their receiver consists of (i)
mapping a large reload buffer, (ii) evicting the dTLB entries
of each item in said buffer, (iii) using an unmasked gadget
to dereference secret data whose VPN is shared with that
of a valid address in the reload buffer and (iv) measuring
the time to complete dereferences of addresses in the reload
buffer to find which result in TLB hits. Unfortunately, this
features an important limitation: it requires that the secret
data have low entropy. This is because a high-entropy secret
would require prohibitively large reload buffers that exceed
the size of the TLB and become practically unmanageable
for an attacker. Due to this restriction, Hertogh et al. [14]
were only able to leak kernel ASCII strings with a known
prefix, i.e., those found in /etc/shadow.

4.2. Exploiting unmasked gadgets with PWSC

We now present our methodology for increasing the
amount of information leakable by an adversary using un-
masked gadgets. Like Hertogh et al. [14], we rely on the
Spectre Branch History Injection (BHI) primitive to trigger
mis-speculation. Unlike Hertogh et al. [14], we rely on the
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Figure 7. The final Spectre-BHI + PWSC procedure. The attacker wraps the
BHB poisoning and the victim system call in the differential Prime+Probe
measurement. By passing in a noncanonical address (BadAddr) the adver-
sary can selectively disable the execution of *secret.

novel PWSC channel to transmit and receive secrets. We
now summarize how we combined these two components.

Spectre BHI. Spectre BHI [29] is a cross-privilege Spectre-
V2 attack where an adversary poisons the branch history
buffer (BHB) to trigger mis-speculation. When encountering
an indirect branch, the CPU speculatively jumps to the code
target predicted by the branch target buffer (BTB). The BTB
is indexed by both the current instruction address and the
conditional branch history stored in the BHB. The BHB
stores the outcomes of the last N (on our processor, N =
194) dynamic conditional branches. By poisoning the BHB,
the adversary can direct where the processor looks in the
BTB and redirect execution to a gadget of their choosing.

In all our experiments, we target the 10 BHI-compliant
unmasked gadgets exploited by Hertogh et al. [14]8 and use
the same steps to launch Spectre-BHI as prior work [14],
[29], [38]. Specifically, the adversary (i) primes the BTB,
(ii) increases the speculation window so that the unmasked
gadget executes speculatively, (iii) sets the registers used as
inputs to the target gadget to the desired values, (iv) poisons
the BHB, and (v) makes a system call into the kernel which
triggers mis-speculation to the desired gadget.

Combining Spectre-BHI and PWSC. To launch Spectre-
BHI with the PWSC receiver, the adversary first precondi-
tions system state for the order oracle. The exact details of
this process depend on which level of the page walk we are
analyzing and which order oracle is available (Section 3.2).
Second, the adversary performs both the above-described
Spectre-BHI steps and the differential Prime+Probe steps
from Section 3.1 to trigger a page walk on secret and
monitor the associated cache fills. To avoid polluting the
BHB, we perform the Prime step immediately before poi-
soning the BHB. Finally, to selectively disable the execution

8. Currently deployed Spectre mitigations do not protect against these
unmasked gadgets, presumably due to their perceived exploitation difficulty.
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Figure 8. By sliding the attacker’s window, the attacker has several chances
to leak a given bit b.

of *secret (as required by the differential Prime+Probe
receiver), the adversary picks an address addr that fails
the (relaxed) canonicality check. These attack steps are
summarized in Figure 7.

PWSC order oracle choice. Suppose we attempt to use the
above procedure to leak a 64-bit secret value W that passes
the (relaxed) canonicality check. The MMU will interpret
W as either a userspace or kernelspace address depending
on the kernel address bit (Section 2.1). If W looks like a
userspace address, PWSC can leverage the memory mapping
order oracle to leak, with overwhelming probability, its
entire VPN bits (bits 47:12).9 If SMAP is disabled, PWSC
can additionally leak the high-order 6 bits of W ’s page offset
(bits 11:6). If W looks like a kernel-space address, however,
PWSC must rely on the page walker cache order oracle and
can only leak between 6 and 3010 bits of W , depending on
whether pre-existing kernel memory mappings share their
VPN bits with W (Section 3.2).

4.3. Attacking systems with LAM

We now show that Spectre-BHI and umasked gadgets,
combined with PWSC, can be used to leak almost all of
physical memory (via physmap, the Linux kernel’s memory
map to the contents of physical memory) when LAM is
enabled. The attack makes no assumptions on the contents
of physmap, i.e., it does not assume any known prefix in or
assume certain distributions of the secret data. In particular,
the secret data does not need to represent valid pointers.

Exploiting LAM. Recall from Section 4.1 that LAM dis-
ables the canonicality check on the lower 15 bits of the upper
16 sign-extended bits in a virtual address. If we assume
physmap is full of random-looking data, this suggests that
∼ 50% of physmap will be unleakable using just PWSC.
Further, of the data that does pass the relaxed canonicality
check, some will be out of reach of PWSC’s receiver (e.g.,
the cache line offset bits in the virtual address page offset).

We circumvent the above issues by using a sliding
window strategy that slides at byte granularity. Figure 8
gives an example. Suppose we wish to leak bit b contained in
a 64-bit word W that fails the relaxed canonicality check.
By sliding one byte, we now attempt to dereference the

9. Observe that in this situation the adversary controls all the available
userspace memory mappings since they all fall within their own address
space. The adversary can thus minimize pre-existing memory allocations
to ensure (with overwhelming probability) that the secret-dependent page
fault will fail at attacker-selected levels.

10. SMAP does not apply to kernel addresses.

TABLE 1. AVERAGE ACROSS PHYSICAL MEMORY PROFILING.

LAM Userspace LAM Only
Total 99.55% 95.99%

Interesting 98.13% 81.02%

shifted word W ′ that still contains b. Although W failed
the check, W ′ may pass the check in which case we have
another chance to learn b. The same principle allows us to
leak additional bits, e.g., the page offset bits. The only way
to fail to leak a bit b is for all slides in the vicinity of b to
yield words that fail the relaxed canonicality check.

Physmap leakage analysis. We now assess what bits of
physmap can be leaked with an unmasked gadget combined
with our PWSC receiver and the above sliding window
procedure. To this end, we use LiME [51] to extract the
data currently in physmap (16 GB) three times with different
applications running. We then collect statistics on that data.

For our analysis we conservatively assume that no mem-
ory is mapped, i.e., all page walks fail at PT level 4. We also
assume that SMAP is enabled. This means that for secrets
that appear as userspace pointers, the adversary can leak
all VPN bits, and for secrets that appear as kernel-space
pointers, they can only leak the high-order 6 bits of PLI4.

We find that there are many all-zero bytes (0x00) in the
physical memory. Since all-zero bytes pass the canonicality
check but are often unused memory or the result of zeroing
out memory (i.e., not interesting to leak), we present two
metrics. The “Total” metric counts the percentage of bits that
are leakable. The “Interesting” metric counts the percentage
of bits that are leakable that are not a part of an all-zero
byte. We do not check for bits that are leaked as a part of an
all-one byte (0xFF) but note that this case was uncommon.

Table 1 reports the results. If LAM is enabled, almost all
memory (> 99%) is leakable with unmasked gadgets and
PWSC’s receiver. If only userspace LAM is enabled, this
number (> 96%) is still almost all memory. These numbers
are close to 100% because of the sliding window strategy
discussed earlier: by shifting byte by byte the adversary has
multiple chances to leak a given byte, and only one of the
windows containing the byte needs to look like a canonical
pointer for the attack to work. Next, we evaluate the attack
in practice against both ASCII and random kernel data.

Leaking ASCII data. To start, we select two ASCII targets:
/etc/shadow and arbitrary ASCII strings owned by a
victim process. The first target is vulnerable to known
attacks [14] and we report it here for completeness. The
second target is only leakable using PWSC, as arbitrary
strings in a victim process do not have a known prefix. For
the second target, we insert a 700-character random string
in a victim process’s heap, text, and stack segments.

Recall that ASCII strings are encoded in 7 bits and
leave the most significant bit as 0. Without LAM, any 64-bit
word in an ASCII string would fail the canonicality check,
preventing the attack. With LAM, however, any such word



TABLE 2. COMPARISON OF SLAM ACCURACY VS. PWSC ACCURACY
ACROSS ASCII AND NON-ASCII SECRETS.

SLAM PWSC
ASCII >99% >99%

Non-ASCII Unable to leak bits 81.95%

will appear as a canonical LAM userspace pointer [14].
The adversary can therefore use the memory mapping order
oracle to extract the VPN bits of any such word. Further,
since we know that every ASCII character will be canonical
we can also improve performance by not using a sliding
window strategy and just leaking each character one-by-one.

We now report the results of the attack. For the
/etc/shadow experiment, after feeding in the target
kernel address, the attack can extract the root password
hash in 68 seconds. For the random ASCII victim process
experiment, the attack can extract the target string from
the victim process at a rate of 0.88 chars (6.16 bits) per
second. Sometimes, extra system noise in the differential
step of PWSC can result in misreporting certain characters.
Nonetheless, the attack succeeds with > 99% accuracy.

Leaking non-ASCII data. Finally, we evaluate the attack
on random portions of physmap that contain “Interesting”
kernel data for a total of 19064 bits. We find that PWSC’s
receiver can extract this memory at a rate of 3.064 bits
per second and extracts 81.95% of the bits correctly. Some
bits are not reconstructed correctly due to extra noise sub-
tracted from the signal in PWSC’s differential Prime+Probe
receiver. Moreover, the bit rate is lower compared to ASCII
leakage due to the sliding window strategy causing the same
bits to be leaked multiple times, slowing down leakage. We
compare PWSC’s accuracy to SLAM’s accuracy in Table 2.

4.4. Attacking systems without LAM

We now demonstrate that Spectre-BHI and umasked
gadgets, combined with PWSC, can be used to leak sen-
sitive data even on systems where LAM is not available
or disabled. Specifically, we perform a full key extraction
attack on the Dilithium post-quantum cryptosystem.

Side-stepping canonicality checks. Without LAM, the
values recoverable using PWSC are severely restricted.
Nonetheless, PWSC can still be used to leak data that
appears canonical. Specifically, the adversary can use PWSC
to leak the bits that follow a pattern of 17 consecutive 0
bits (0x00000) or 17 consecutive 1 bits (0xFFFF8).11 A
pattern of 17 consecutive 0s means that the data looks like
a userspace pointer; given this pattern, the adversary can
use the memory mapping oracle to leak, with overwhelming
probability, all the following 35 bits (the ‘VPN’ bits).12 A

11. Since x86 is little endian, we say that a byte at address x follows
bytes at addresses x+ 1.

12. The most significant bit of the VPN is included in the canonicality
check. Therefore, the leakable bits are the VPN bits minus that one bit.

pattern of 17 consecutive 1s means that the data looks like
a kernel-space pointer; given this pattern, the adversary can
use the page walker cache order oracle to leak between 5
and 29 of the bits that follow (cf. Section 4.2).

We now demonstrate how, without LAM, the above
principle can be exploited to extract the full cryptographic
key from the Dilithium post-quantum cryptosystem.

Background. Dilithium, also known as ML-DSA, is a
digital signature scheme approved by NIST’s post-quantum
cryptography project [52]. Dilithium is based on the module
learning with errors (MLWE) and the module short integer
solution (MSIS) problems. Its computations are done in
the polynomial ring Rq (Zq[x]/x

n + 1), i.e., the ring of
polynomials with coefficients in Zq and modulo xn+1. Let
Rk

q denote a vector of k elements where each element is in
Rq. The Dilithium procedure starts by generating a public
and secret key pair. Specifically, s1 (s1 ∈ Rl

q) is one of
the secret key components. Coefficients in s1 are uniformly
distributed in the range [−η, η]. The goal of our attack is to
leak s1 as it gives the attacker the ability to forge signatures.

Dilithium’s signing procedure samples the nonce y (y ∈
Rl

q) deterministically (based on the secret and message) or
non-deterministically (for every signature). Coefficients of y
are distributed uniformly in [−γ1, γ1]. The algorithm uses
the message, secret key and nonce to compute the signature
that follows the constraint that z = y + cs1, where z (z ∈
Rl

q) and c (c ∈ Rq) are components in the output signature.

Leaking Dilithium keys. We consider victim running
the reference, side-channel hardened implementation of
Dilithium-2 [52] in a userspace process on the same machine
as the attacker. The victim generates a Dilithium key pair
and signs incoming messages. Every time the victim signs a
message (e.g., in response to attacker-provided requests), the
corresponding nonce y is produced and stored in the stack.
The attacker can then locate this nonce y in physmap and
use PWSC to recover its coefficients. The leaked coefficients
serve as hints that can be passed to lattice reduction tools
to fully reconstruct the secret key component s1 [53].

In Dilithium-2, a nonce y is a vector of four 256-degree
polynomials (n = 256, l = 4). Each coefficient of y is
a 32-bit integer ranging from −217 to 217 (γ1 = 217).
Represented in binary, one coefficient could range from
0x00000000 to 0x00020000 (positive) or from 0xFFFFFFFF
to 0xFFFE0000 (negative). Two consecutive coefficients
form a 64-bit address. Thus, the probability that an address
looks like a canonical pointer is 25% (or 12.5% if we only
count userspace pointers). With our PWSC receiver, the
adversary can attempt to leak one coefficient at a time. We
apply a 32-bit sliding window so that the most-significant
bits of the value triggering the page walk are always the
most-significant bits of a 32-bit coefficient.

Each leaked 32-bit coefficient can be used to construct a
linear equation that encodes information about s1. Given a
nonce y, it holds that z = y+cs1. Here, z and c are exposed
to the attacker through the output signature. Suppose the first
coefficient of the nonce is leaked (y[0][0]). The attacker can



construct the equation as cs1[0][0] = z[0][0] − y[0][0] and
pass it to a lattice reduction tool. In [53], full key recovery
requires 876 hints, which means that our attack needs the
victim to sign approximately 4 messages or 7 messages if
the attacker can only leak userspace addresses. In practice,
we find that it takes an adversary 115 minutes to collect
921 hints for the lattice reduction. The lattice reduction then
takes 81 minutes to successfully extract the secret key.

5. Case study 2: data dereferencing through
data-memory dependent prefetchers

Recent studies have found that data memory-dependent
prefetchers (DMPs) on modern Apple CPUs scan and deref-
erence pointer-like data directly from the memory sys-
tem [15], [42]. DMPs, like speculative execution, also effec-
tively suppress the exception that would result from deref-
erencing an invalid pointer. That is, the DMP can microar-
chitecturally dereference secret (*secret), creating a
second path through which to create an unmasked gadget
(cf. Section 4.1). However, prior attacks only leak limited
information about the secret dereferenced by the DMP (i.e.,
if it looks like an attacker-chosen pointer [15]) and fail when
the secret is an invalid pointer, as they rely on conventional
cache side-channel receivers.

In this section, we combine the DMP memory access
with PWSC to extend the leakage capabilities of DMP
attacks and demonstrate conclusively that DMPs can be used
to leak invalid pointers. To this end, we reverse engineer
the precise activation criteria of the DMP on our Intel i9-
13900K processor (Section 5.1). We then show how the Intel
DMP and PWSC can be combined to break security in an
intra-process sandbox setting (Section 5.2).

5.1. Intel DMP characterization

We begin by reviewing the basic DMP activation pattern
described in Augury [42] and GoFetch [15]. This pattern
first initializes an array (aop) of length M and fills aop
with pointers to memory addresses that correspond to unique
cache lines. Next, it uses clflush to evict both aop and
the memory addresses pointed to by aop. The code then
architecturally dereferences the first N entries in aop (with
N < M ), as illustrated in Figure 9 (first row) and Listing 2.
Finally, the code uses rdtscp to time the latency of deref-
erencing “out-of-bounds” aop pointers that had not previ-
ously been dereferenced, i.e., aop[N],...,aop[M-1].

With N ≥ 300, we observe consistent L1 cache hits
(∼ 6 cycles) when dereferencing 16 out-of-bounds pointers
(i.e., entries [N,N+15] of aop). We find that for the DMP
to activate, aop must be 64-bit (size of a pointer) aligned.
We also tested the other (Apple) DMP activation patterns
described in GoFetch [15] but found that only the above
activation pattern activates the Intel DMP.

Preconditions for activation. We split the previous access
pattern into two phases: (i) a training phase, used to train

1 // Fill aop with unique pointers
2 uint64_t aop[M];
3 for(int i=0; i<N; i++) {
4 ptr = aop[i];
5 ... = *ptr;
6 }

Listing 2. The access pattern studied by GoFetch that activates Intel DMPs.

Code Dereference

DMP Dereference

aop[0] aop[1] aop[2] …Intel DMP
Training

aop[0] aop[1] aop[2] aop[16]…Intel DMP
Prefetching

*

aop[0] aop[1] aop[2] aop[N-1]…GoFetch aop[N]

* * * * *

…

…aop[N-1]

** * *

Code load Prefetch Untouched

Figure 9. The first row shows the memory access pattern used by GoFetch
to activate the Intel DMP [15]: a streaming access pattern that architec-
turally loads and dereferences pointers. We split this access pattern into
two phases: training and prefetching (second and third row). The training
phase matches the original access pattern, while the prefetching phase has
less restrictions and can trigger the DMP even with just one memory load.

the Intel DMP to dereference out-of-bounds pointers and (ii)
a prefetching phase, used to activate a pre-trained DMP.

Using the same access pattern as before for the training
phase (second row of Figure 9), we aim to test if the DMP
(i) is PC tagged, meaning it only activates on memory loads
with the same PC (program counter) as the loads used for
training, and (ii) only activates when the memory accesses
originate from the same aop used for training.

We perform two experiments. In the first one, the
prefetching phase reuses the same instructions as the training
phase but streams over a different aop. In the second one,
the prefetching phase accesses the same aop as the training
phase but executes a separate copy of the training code.
Both experiments train the DMP with N = 300. We only
observe DMP activations (i.e., dereferences of out-of-bounds
pointers) in the first experiment, suggesting that the Intel
DMP is PC tagged and the prefetching phase does not need
to rely on the same aop used for the training phase.

Avoiding architectural pointer dereferencing. Next, we
investigate which of the two load instructions of Listing 2
(at Lines 4 and 5) is used for the PC tag. To this end, we
run a variant of the prefetching phase where only one of the
two load instructions is executed. To ensure that both phases
still use the same code, we insert an “if” statement (with
barriers to inhibit speculative execution) to conditionally
skip one of loads during the prefetching phase. We observe
that performing the first load (Line 4) is sufficient to activate
the DMP. We conclude that the DMP is PC tagged to the



first load of the training pattern and that architectural pointer
dereferences are not required to activate the DMP during the
prefetching phase. We refer this load as the DMP trigger.

As a byproduct of this experiment, we find that ac-
tivating the DMP with only the first load decreases its
confidence. That is, when we stream over aop without
dereferencing pointers, we eventually stop observing DMP
activations. Specifically, in our experiments, we stop seeing
DMP activations after executing 10 DMP triggers.

PC aliasing. It is common for microarchitectural tags to
only track partial bits to reduce overheads [54]. To test if
the DMP PC tag is vulnerable to aliasing attacks, we modify
the prefetch phase to use a DMP trigger with a 1-bit PC tag
difference compared to the trained PC tag. We move the 1 bit
difference from the least significant to the most significant
bit until we observe DMP activations. This would imply
that the two PC tags are aliased, revealing the number of
bits used for the PC tag. Our experiment shows that the
Intel DMP only stores the least significant 10 bits of the
training load’s PC. That is, the DMP activates when the least
significant 10 bits of a load’s PC match the least significant
10 bits of the training load’s PC.

Dereference target. Next, we aim to investigate what ad-
dresses the Intel DMP dereferences when it activates. To
start, using the same training pattern as above, we execute
a DMP trigger loading from aop[j], where aop is a
different array of pointers than the one used for training. We
then time the latency of dereferencing entries [j+1,j+16]
of aop. We observe that, when accessing aop[j], the
DMP dereferences the address stored at aop[j+16] (i.e.,
128 bytes ahead of the address loaded by the DMP trigger).

We also check if the pattern of loads during training
influences the Intel DMP behavior during the prefetching
phase. To this end, we modify the stride used to ac-
cess the array of pointers during training13 and check if
the stride influences what address the DMP dereferences
when it activates. This time, we find that, when access-
ing aop[j], the DMP dereferences the address stored at
aop[j + stride × 16]. That is, the DMP dereferences
pointers stored stride × 16 entries (i.e., stride × 128
bytes) ahead of the address loaded by the DMP trigger.

We summarize the DMP activation function in Figure 9
(third row). This function implies that the DMP can derefer-
ence data that was and will never be architecturally accessed
by the program. Further, the attacker can precisely target an
address for the DMP to dereference microarchitecturally.

DMP restrictions. Finally, we investigate restrictions on the
Intel DMP across three dimensions: (i) training the DMP
across process boundaries; (ii) restrictions on pointers the
DMP will attempt to dereference; (iii) maximum prefetch
distance from the DMP trigger load. For (i), our results show
that the DMP cannot be trained across process boundaries,

13. Line 4 in Listing 2 can be replaced with ptr = aop[i*stride]
to enable various training strides.

both when time-sharing the same logical core and in an
SMT setting, matching Intel’s documentation [47]. For (ii),
we find that the DMP will attempt to dereference canonical
userspace pointers even if they are invalid addresses but
will not attempt to dereference kernel space or noncanonical
pointers. For (iii), we find that the address accessed by the
DMP trigger must live in the same 256 KB aligned region
as the address to be dereferenced for the DMP to activate.

5.2. Attacking Intra-Process Sandboxes

We now demonstrate how an attacker can use PWSC
(Section 3) and the DMP (Section 5.1) to leak data outside
its security domain in an intra-process sandbox setting.

Threat model. We assume an intra-process sandbox sce-
nario. Each security domain is restricted to accessing
data within its own address space, enforced by memory
permission management primitives. Specifically, we use
ERIM [55], an Intel MPK-based intra-process sandbox for
our attacks. We assume the victim exposes a function call
interface to the attacker, and that this call is protected against
Spectre attacks through speculation barriers. The attacker’s
goal is to leak secrets from the victim’s address space. We
assume that the target secrets pass the address canonical-
ity check (either due to LAM or due to starting with 17
consecutive 0 bits or 1 bits, as discussed in Section 4).

Attack overview. First, we attempt to use the DMP to
dereference the victim’s secrets from the attacker’s security
domain. However, we observe that the Intel DMP follows
the memory permission rules enforced by MPK and cannot
directly dereference data across intra-process sandboxes.

We circumvent the above limitation by exploiting the
PC aliasing behavior of the DMP and causing the DMP
to activate from the victim’s security domain. Suppose the
attacker wants to leak a secret stored at address addr (in the
victim’s security domain) and that addr is 64-bit aligned.
The attacker first identifies a load in the victim’s function ac-
cessing an address victim_addr, where victim_addr
is a multiple of 128 bytes away from and lives in the same
256 KB region as addr.14 Next, the attacker computes a
stride s = (addr − victim_addr)/128. The attacker
then runs a training loop in their own address space, using
a stride s and with a load instruction that PC aliases with the
victim load of victim_addr. After training, the attacker
can trigger a secret-dependent page walk by calling the
victim function. Specifically, when the victim function loads
from victim_addr, the DMP will load and dereference
the pointer stored at victim_addr+ s ∗ 128 = addr.

Evaluation. We evaluate our attack on 1,000 randomly
generated values that are invalid pointers. We force these
values to be canonical by fixing the most significant 17 bits
to be zeros, leaving 42,000 bits (bits 47:6 of each value) for

14. In some cases, the attacker may have control over victim_addr
via passing arguments to the victim’s function.



PWSC to leak. Our implementation can leak these bits at a
rate of 14.46 bits per second and an accuracy of 82.08%.
Similarly to Section 4, some bits are not reconstructed
properly due to noise.

6. Mitigations

For case study 1, our attacks could be mitigated using
prior Spectre defenses (e.g., eIBRS [22]) and LASS, an up-
coming Intel feature that enforces kernel-userspace address
space isolation [22], [50]. Specifically, LASS prevents kernel
code from initiating page walks on userspace addresses,
which would prevent Section 4’s attacks from leaking data
that looks like userspace pointers. However, even with LASS
enabled, an attacker could still use the PWC order oracle to
leak between 6 and 30 bits of data that looks like canonical
kernelspace pointers, as discussed in Section 4.2.

For case study 2, our attacks could be mitigated using
DMP-specific mitigations, which include disabling the DMP
(with Intel DOIT) and/or using the IBPB command when
switching between different security domains [47]. At the
time of writing, however, neither of these commands is
accessible to unprivileged software.

7. Related Work

Recovering sensitive information through page walks.
AnC also leverages the cache side effects of page walks
to leak secret PT indexes [17]. However, as we discuss in
Section 2.3, their assumptions and setting are completely
different from ours. Specifically, AnC assumes write access
to the public target pointer, whereas we assume no write
access to the secret target pointer. AnC’s assumptions dra-
matically simplify their attack, as the attacker can easily
isolate target page walk levels, does not have to cope with
invalid pointers (as we do), and deals with significantly less
noise—obviating the need for our mechanisms in Section 3.
Correspondingly, AnC can only be used to break ASLR,
whereas PWSC can be used as a general transmission
primitive for microarchitecture that attempts to dereference
secrets (e.g., speculative execution, DMPs).

Binoculars [56] exploits a different mechanism (false
dependencies between loads and stores), to infer the VPN.
However, they do not purpose a general order oracle and
assume external knowledge (e.g., that the secret is a stack
address) or that the secret is otherwise low entropy (e.g.,
limited to attacking KASLR). Additionally, neither AnC nor
Binoculars consider leaking invalid pointers.

Exploiting unmasked gadgets using speculative execu-
tion. Hertogh et al. [14] use dTLB side channels and LAM
to exploit unmasked gadgets due to speculative instruction
execution. Due to their use of a dTLB receiver, they are
restricted to just a small subset of the kernel’s direct memory
region (/etc/shadow) or, more generally, ASCII strings
with a known prefix. Moreover, they do not explore attacks
without LAM enabled. Our work shows that the conse-
quences of LAM are significantly worse than shown in

SLAM—namely that PWSC renders almost all of physical
memory vulnerable. We also explore attacks without LAM
enabled and show that even without LAM, valuable data
is still vulnerable. Furthermore, we show that unmasked
gadgets can form due to microarchitectural optimizations
beyond speculative instruction execution (such as the DMP).

Apple DMP. Augury [42] and GoFetch [15] study the DMP
in Apple silicon. While Augury does not give a realistic
attack target, GoFetch performs cryptanalysis to coerce key-
dependent data to “look like” a pointer. We mainly view
our work as orthogonal to these: our focus is to provide a
generic mechanism to increase leakage through dereferenced
invalid pointers through the PWSC procedure. GoFetch also
confirmed the existence of the Intel DMP and determined a
basic activation pattern for it. However, our work is the first
to reverse engineer the semantics of this DMP.

Since we combine PWSC with the Intel DMP, a natural
question to ask is whether our techniques extend to the
Apple DMP. We believe the answer is primarily “no.” The
Apple DMP does not have a training phase and attempts
to dereference all eight pointers within the incident loaded
cache line. This makes denoising more challenging. Fur-
ther, Apple DMPs refuse to dereference data whose most
significant 32 bits do not match the data’s address, which
precludes many bits from being leaked.

8. Conclusion

Cache side-channels are by now a well-known and
well-understood tool for attackers. Unsurprisingly, the best-
practices for secure code have long included disallowing
secret-dependent memory accesses of any kind under the
assumption that the secret will leak. While conceptually
true, practical attacks have always required workarounds
and additional gadgets for manipulating the secret bits into
the portions of the address that have known techniques
for receiving them. Worse for the attacker, when a non-
pointer secret flows to a gadget measured by a cache side-
channel, no leakage occurs. This has not gone unnoticed
by defensive proposals and software maintainers, who have
avoided removing Spectre gadgets when no realistic receiver
is known. Our work makes significant progress towards
aligning the implicit threat model in best practices and actual
attacker’s capabilities. If we assume a standard cache and
TLB based system, the page walk side channel presented
leaks all of the bits encoded into microarchitectural state by
a secret-dependent page walk.
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Appendix A.
Flushing the page walker caches

Recall from Section 3.2 that to construct page walker
cache order oracle, the attacker requires the ability to se-
lectively flush partial translations of a secret from the page
walker caches. To achieve this, our attacks rely on filling
up the target page walker cache level with unrelated partial
translations, effectively evicting all existing cache entries
including the secret’s partial translation. Specifically, to evict
page walker cache level i, we access n addresses with differ-
ent PLi bits, progressively increasing n until a new cache
access is observed during the attack (cf. Figure 6). To flush
the 1st level page walker cache (also known as the TLB),
we access n addresses spaced 4 KB apart. For the 2nd, 3rd,
and 4th level page walker caches, we access n addresses
spaced 2 MB, 1 GB, and 512 GB apart, respectively. Our
attacks determine the value of n at runtime and do not rely
on knowing the exact page walker cache sizes.

Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

This paper combines speculative execution primitives
with data prefetchers in CPUs to leak arbitrary secrets.
Specifically, it demonstrates that modern CPUs could be
forced to dereference arbitrary secrets as pointers though
mis-speculation and the side effects of the page walk process
during the referencing can be used to infer all the bits of the
secret except the 6 LSB bits corresponding to the cacheline
offset. The paper demonstates the feasibility of this attack
on Intel CPUs.

B.2. Scientific Contributions

• Identifies an Impactful Vulnerability
• Provides a Valuable Step Forward in an Established

Field
• Independent Confirmation of Important Results with

Limited Prior Research

B.3. Reasons for Acceptance

1) This paper identifies an impactful vulnerability: This
paper for the first time demonstrates the ability to
leak arbitrary secrets by exploiting a combination of
speculative execution and data prefetching behavior in
modern CPUs. The authors also describe a novel dif-
ferential prime and probe attack that relies on inferring
cache side effects by capturing snapshots before and
after the sensitive code has executed. The exploration
of the page walk caches and the demonstration of how
one can systematically infer secret bits by terminating
the page walk at different levels is also noteworthy.

2) This paper provides a valuable step forward in an
established field and this paper independently confirms
results with limited prior research: This paper for the
first time demonstrates leaking of secrets that looks like
invalid addresses (e.g., do not comply with canonicality
checks). This is a significant improvement over the
closest related work on side channels based on data
dependent prefetchers ( GoFetch, Augury) as well as
page walk information (AnC).
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